A diamagnetic inequality for semigroup differences

نویسندگان

  • DIRK HUNDERTMARK
  • BARRY SIMON
چکیده

The diamagnetic inequality for the magnetic Schrödinger semigroup is extended to the difference of the semigroups of magnetic Schrödinger operators with Neumann and Dirichlet boundary conditions on arbitrary open domains and rather general magnetic vector potentials A and potentials V . In particular, this bound renders moot all the technical issues in the recent proofs of the independence of the boundary conditions for the integrated density of states for magnetic Schrödinger operators: Independence of the boundary conditions for the free case, that is, for vanishing potentials and vector potentials, immediately implies independence of the boundary conditions of the integrated density of states for a large class of magnetic Schrödinger operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An iterative method for amenable semigroup and infinite family of non expansive mappings in Hilbert spaces

begin{abstract} In this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. The results present...

متن کامل

Diamagnetic expansions for perfect quantum gases

In this work we study the diamagnetic properties of a perfect quantum gas in the presence of a constant magnetic field of intensity B. We investigate the Gibbs semigroup associated to the one particle operator at finite volume, and study its Taylor series with respect to the field parameter ω := eB/c in different topologies. This allows us to prove the existence of the thermodynamic limit for t...

متن کامل

Stochastic Differential Equations with Jumps

Gradient estimates and a Harnack inequality are established for the semigroup associated to stochastic differential equations driven by Poisson processes. As applications, estimates of the transition probability density, the compactness and ultraboundedness of the semigroup are studied in terms of the corresponding invariant measure.

متن کامل

L-smoothing for the Ornstein-Uhlenbeck semigroup

Given a probability density, we estimate the rate of decay of the measure of the level sets of its evolutes by the Ornstein-Uhlenbeck semigroup. It is faster than what follows from the preservation of mass and Markov’s inequality.

متن کامل

Functional Inequalities for Gaussian and Log-Concave Probability Measures

We give three proofs of a functional inequality for the standard Gaussian measure originally due to William Beckner. The first uses the central limit theorem and a tensorial property of the inequality. The second uses the Ornstein-Uhlenbeck semigroup, and the third uses the heat semigroup. These latter two proofs yield a more general inequality than the one Beckner originally proved. We then ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001